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Abstract

A semi-in®nite interface macrocrack interacting with multiple oriented subinterface microcracks in the process zone

near the macrocrack tip in metal/piezoelectric bimaterials is studied. After deriving the elementary solutions for a semi-

in®nite interface crack and a special subinterface crack under various loading conditions, the present interaction

problem is deduced to a system of integral equations with the aid of the pseudo-traction-electric-displacement method.

The integral equations are then solved numerically by using the Chebyshev numerical integration technique. After

doing so, the variable tendencies of the stress intensity factors at the interface macrocrack tip versus the location angle

and the orientation angle of the subinterface cracks, and the distance between the interface crack tip and the center of

the subinterface microcrack are derived and discussed. The numerical results are shown in the ®gures. Detailed com-

parisons between the results under the compound mechanical-electric loading conditions and those derived under

purely mechanical loading conditions are performed. Some conclusions are given which are certain to be useful for

investigating the microcrack shielding problems in metal/piezoelectric bimaterials. Ó 2000 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

With the rapid development of modern industry, piezoelectric materials are more and more widely used in
smart materials and structures such as actuators, sensors and transducers. Generally speaking, piezoelectric
materials are ceramics that are manufactured by using conventional ceramic manufacturing processes with
high temperature and strong electric ®eld. They show brittle nature and are liable to develop critical cracks
under stress concentrating or cooling conditions. On the other hand, in practical engineering, piezoelectric
ceramics are usually bonded with or embedded in metal or other kinds of materials to construct a variety of
special functional components. Hence, during the manufacturing, maintenance and service of these intel-
ligent components, macrocracks are often formed on interface of metal and piezoelectric phases due to
impact, cooling or other unexpected reasons. Now, crack is one of the main damage sources of such kinds of
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smart materials, and their low tolerance to interface damage and microdefects has received much attention in
the last twenty years. A large number of investigations on this topic have been done and a great progress has
been made. For example, Parton (1976) has considered the problem of a ®nite crack at the interface between
two piezoelectric materials subjected to a far ®eld uniform tension; Sosa and Pak (1990) developed a three-
dimensional solution for a semi-in®nite crack in a piezoelectric material; Shindo and Ozawa (1990) analyzed
cracks in piezoelectric layers using integral equation methods; Kuo and Barnett (1991) carried out an as-
ymptotic crack tip analysis and found various singularities depending on the crack face boundary condi-
tions; Pak (1992) investigated the electroelastic ®eld and the energy release rate for a ®nite crack by way of
the method of distributed dislocations and electric dipoles; Sosa (1992) obtained the asymptotic expressions
for the electromechanical ®elds in the vicinity of a crack; Suo et al. (1992) solved the boundary value problem
of electroelastic materials with interface cracks. More recently, Park and Sun (1995a,b) and Park and
Carman (1997) studied the two-dimensional problems for an elliptic hole or crack in piezoelectric materials,
and they de®ned two kinds of intensity factors, i.e., the Mode I and Mode II stress intensity factors (SIFs)
and the electric displacement intensity factor (EDIF). However, on the whole, most of the above studies
concentrated on the singularities at the tips of a crack, while little e�ort has been done in the interaction
problem between an interface crack and subinterface cracks in metal/piezoelectric bimaterials. Especially,
the microcrack shielding problems and the in¯uence of the electric loading on the shielding e�ect in metal/
piezoelectric bimaterials are still obsure for us and worthy of investigation.

The objective of the present work is to investigate the interaction between a semi-in®nite interface
macrocrack and multiple subinterface microcracks in the near tip process zone in metal/piezoelectric
bimaterials. In Section 2, the fundamental solutions of a semi-in®nite interface crack and a special sub-
interface crack subjected to three kinds of loadings are given, respectively. In Section 3, a pseudo-traction-
electric-displacement method (PTEDM), which is motivated by the well-known pseudo-traction method
(PTM) (Horii and Nemat-Nasser, 1985, 1987), is proposed to solve the present macrocrack±microcrack
interaction problem which can be reduced to a system of integral equations. Using the Chebyshev nu-
merical integration (Chen and Hasebe, 1994), the integral equations can be solved numerically. In Section
4, numerical results of the Mode I stress intensity factor for a special dissimilar piezoelectric material, i.e.,
Cu/PZT-4, are calculated and shown in ®gures, in which three kinds of remote loading conditions are
preferred for making necessary comparisons. First of them is the compound mechanical-positive-electric
loading, the second is the purely mechanical loading, while the third is the compound mechanical-negative-
electric loading. Moreover, a detailed discussion about the macrocrack±microcrack interaction behavior is
also performed in the same section.

2. Fundamental formula and fundamental solutions

Consider an in®nite piezoelectric bimaterial plate, where material 1 and material 2 occupy the upper and
the lower half-planes, respectively (Fig. 1).

In a linear piezoelectric medium, the elastic and electric ®eld equations can be written as

rij � cijkluk;l � elij/;l; Di � eikluk;l ÿ eil/;l;

rij;i � 0; Di;i � 0; El � ÿ/;l;
�1�

where rij; ui;Di;Ei and / are stress, displacement, electric displacement, electric ®elds and electric potential,
respectively. cijkl; eijk, and eil are the corresponding elastic, piezoelectric, and dielectric constants, respec-
tively.

It has been shown by Suo et al. (1992) that for a two-dimensional problem, the electroelastic ®eld can be
represented in terms of four functions f1�z1�; f2�z2�; f3�z3�; and f4�z4�; each of which is holomorphic in its
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argument zj � x� ljy. The representations for displacement ur, electric potential /, stresses rij, and electric
displacement Di are

ur;/f g � 2Re
X4

a�1

aafa�za�;

r2j;D2

� 	 � 2Re
X4

a�1

baf 0a�za�;

r1j;D1

� 	 � ÿ2Re
X4

a�1

balaf 0a�za�:

�2�

Here, � �0 is designated as the derivative with respect to the associated arguments, a and l satisfy the
following equation:

Q
� � l�R� RT� � l2T

	
a � 0; �3�

where a � a1; a2; a3; a4� �T, and Q, R, and T are 4� 4 matrices de®ned as

Q � ci1k1 e1i1

eT
1k1 ÿe11

� �
; R � ci1k2 e2i1

eT
1k2 ÿe12

� �
; T � ci2k2 e2i2

eT
2k2 ÿe22

� �
:

In order to obtain a nontrivial solution for Eq. (3), it is required that

Q


 � l�R� RT� � l2T



 � 0: �4�
The left-hand side of Eq. (4) is an eight-order polynomial in l. Suo et al. (1992) showed that Eq. (4) has

no real roots. Hence the eight eigenvalues form four conjugate pairs, i.e., la and la (la�4 � la;
a � 1; 2; 3; 4), where la (a � 1; 2; 3; 4) is assumed to have a positive imaginary part. Corresponding to each
root, la or la, there is a complex eigenvector aa and aa�aa�4 � aa, a � 1; 2; 3; 4). Moreover, the auxiliary
vector b is

b � �RT � lT�a � ÿ 1

l
�Q� lR�a: �5�

The two 4� 4 matrices A and L are de®ned as

A � �a1; a2; a3; a4�; L � �b1; b2; b3; b4�: �6�
Suo et al. (1992) showed that A and L are nonsingular.

Fig. 1. (a) An interface macrocrack under concentrated normal tractions P and (b) a subinterface crack under concentrated normal

tractions P.
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Let us de®ne

Y � iALÿ1: �7�
A bimaterial matrix is de®ned as

H � YU � Y
L
: �8�

Here and throughout the paper, an overbar denotes the complex conjugation, and the terms U and L
attached to matrices and vectors are reserved exclusively to indicate the upper material and the lower
material, respectively.

Furthermore, Suo et al. (1992) de®ned the following function vector f�z�:
f�z� � f1�z�; f2�z�; f3�z�; f4�z�� �T; �9�

where the argument has the generic form z � x� ly.
Once the solution of f�z� is derived for a given boundary value problem, each component function to

calculate the corresponding elastic ®eld could then be evaluated from Eq. (2). Moreover, the set of vectors
along the x-axis is given as

ux � uj�x; 0�;/
� 	 � Af�x� � A�f�x�;

t�x� � r2j�x; 0�;D2

� 	 � Lf 0�x� � L�f 0�x� �j � 1; 2; 3�: �10�

2.1. Fundamental solutions for a semi-in®nite interface crack

Assume that the origin of the global system is located at the semi-in®nite interface crack tip and the x-
coordinate is along the interface, while the y-coordinate is perpendicular to the interface (Fig. 1(a)).

According to the continuous condition of the traction and the electric displacement across the whole x-
axis, there is a relation between the upper boundary values and the lower boundary values denoted by the
terms U and L as

LUf 0U�x� � L
U�f 0U�x� � LLf 0L�x� � L

L�f 0L�x�: �11�
For facilitating the analytic continuation, Eq. (11) is rearranged as

LUf 0U�x� ÿ L
L�f 0L�x� � LLf 0L�x� ÿ L

U�f 0U�x�: �12�
By using the standard analytic continuity argument, it follows that

LUf 0U�z� � L
L�f 0L�z�: �13�

The displacement and the electric potential jump across the interface is

d�x� � u�x; 0�� ÿ u�x; 0ÿ�: �14�
With the aid of Eq. (13), a direct calculation gives

t�x� � LUf 0U�x� � LLf 0L�x�; �15�

id0�x� � HLUf 0U�x� ÿHLLf 0L�x�: �16�
According to the continuity of the displacement and the electric potential across the bonded interface as

inferred from Eq. (16), LUf 0U�x� and LLf 0L�x� can be analytically extended to the whole plane except on the
crack line and satisfy
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h�z� � LUf 0U�z� � Hÿ1HLLf 0L�z�; z 62 c; �17�
where h�z� is introduced for convenience, c is denoted as the crack line. Hence, one can focus on h�z�, and
once h�z� is obtained, the full-®eld solution could be given by Eq. (17). In terms of h�z�, the traction and the
electric displacement (15) and displacement and electric potential jump (16) can be expressed as

t�x� � h��x� �H
ÿ1

Hhÿ�x�; �18�

id0�x� � H�h��x� ÿ hÿ�x��: �19�
Now, consider the problem of a semi-in®nite interface crack, the prescribed traction and electric dis-

placement t0(x) on the crack lines results in the following Hilbert problem:

h��x� �H
ÿ1

Hhÿ�x� � t0�x�; x 2 c; �20�
its complete solution is

h�z� � h1�z�w1 � h2�z�w1 � h3�z�w3 � h4�z�w4; �21�
where

h1�z� � v z� �
2pi

Z
c

t01�x�dx
v��x��xÿ z� ;

h2�z� � �v z� �
2pi

Z
c

�t01�x�dx
�v��x��xÿ z� ;

h3�z� � v3 z� �
2pi

Z
c

t03�x�dx
v�3 �x��xÿ z� ;

h4�z� � v4 z� �
2pi

Z
c

t04�x�dx
v�4 �x��xÿ z� ;

v�z� � zÿ1=2ÿie;

v3�z� � zÿ1=2�k;

v4�z� � zÿ1=2ÿk:

�22�

Here, four eigenpairs �e;w1�, �ÿe;w1�; �ÿik;w3� and �ik;w4� satisfy the following equation:

Hw � e2peHw: �23�
Then the stresses g0

nnp, g0
ntp and the electric displacement g0

2Dp at a point z due to the normal concentrated
traction P shown in Fig. 1(a) can be calculated by Eqs. (2), (17) and (20):

g0
nnp � 2Re

X4

a�1

�� ÿ b1ala sin2b� b2a cos2bÿ b1a sin2b�f 0a�za�
�
;

g0
ntp � 2Re

X4

a�1

1
2
b1ala sin2b
ÿ� � 1

2
b2a sin2b� b1a cos2b

�
f 0a�za�

�
;

g0
2Dp � 2Re

X4

a�1

�b4ala sinb
� � b4a cosb�f 0a�za�

�
:

�24�

Similarly, the stresses g0
nnq, g0

ntq and the electric displacement g0
2Dq at a point z due to the tangential

concentrated traction Q, and the stresses g0
nnd , g0

ntd and the electric displacement g0
2Dd at a point z due to the
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concentrated electric displacement D2 can also be calculated by Eqs. (2), (17) and (20), expressions of which
are not listed here.

2.2. Fundamental solutions for a subinterface crack

Consider a subinterface crack of length 2a subjected to the concentrated normal traction P on the crack
faces in an in®nite dissimilar piezoelectric plane as shown in Fig. 1(b). With the aid of the idea of Suo
(1990), fundamental solutions for the subinterface crack could be constructed from the corresponding
solutions in a homogeneous piezoelectric plane f0�z� (z � x� ly), l is the characteristic root of the ho-
mogeneous piezoelectric material.

f�z� � f1�z�; z 2 upper half plane or y > 0;
f2�z� � f0�z�; z 2 lower half plane or y < 0;

�
�25�

where z � x� ujy �j � 1; 2; 3; 4�.
According to the continuity of tractions, electric displacements, displacements and electric potential

across the interface, the potentials of the upper and the lower planes could be given as

f1�z� � LUÿ1

Hÿ1�YL � YL�LLf0�z�; z 2 upper half plane; �26�

f2�z� � L
Lÿ1

H
ÿ1�YL ÿ Y

U�LL�f0�z�; z 2 lower half plane; �27�
where the overbar denotes the complex conjugate, and the matrixes LU;LL;H;YU;YL are given in Eqs. (6)±
(8).

By substituting Eqs. (26) and (27) into Eq. (25), the solution in the whole plane including two materials is
then obtained. It should be emphasized that the complex variable z should be replaced by zj � x� ljy when
calculating the corresponding quantities via Eq. (2), respectively, for f�z� in Eq. (25).

Then, the stresses g1
nnp, g1

ntp and the electric displacement g1
2Dp along crack line, the stresses g2

nnp, g2
ntp and

the electric displacement g2
2Dp along dashed line, and the stresses g3

nnp, g3
ntp and the electric displacement g3

2Dp
along the interface due to the normal concentrated traction P shown in Fig. 1(b) can be calculated by Eqs.
(2) and (25):

g1
nnp � ÿPd�t ÿ s� � 2Re

X4

a�1

�ÿb1ala sin2b� b2a cos2bÿ b1a sin2b�f 0a�za�;

g1
ntp � Re

X4

a�1

�b1ala sin2b� b2a sin2b� 2b1a cos2b�f 0a�za�;

g1
2Dp � 2Re

X4

a�1

�b4ala sinb� b4a cosb�f 0a�za�;

�28a�

g2
nnp � 2Re

X4

a�1

�ÿb1ala sin2w� b2a cos2wÿ b1a sin2w�f 0a�za�;

g2
ntp � Re

X4

a�1

�b1ala sin2w� b2a sin2w� 2b1a cos2w�f 0a�za�;

g2
2Dp � 2Re

X4

a�1

�b4ala sinw� b4a cosw�f 0a�za�;

�28b�
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g3
nnp � 2Re

X4

a�1

b2af 0a�za�;

g3
ntp � 2Re

X4

a�1

b1af 0a�za�;

g3
2Dp � 2Re

X4

a�1

b4af 0a�za�:

�28c�

Similarly, the stresses g1
nnq, g1

ntq and the electric displacement g1
2Dq along crack line, the stresses g2

nnq, g2
ntq

and the electric displacement g2
2Dq along dashed line, and the stresses g3

nnq, g3
ntq and the electric displacement

g3
2Dq along the interface due to the tangential concentrated traction Q, and the stresses g1

nnd , g1
ntd and the

electric displacement g1
2Dd along crack line, the stresses g2

nnd , g2
ntd and the electric displacement g2

2Dd along
dashed line, and the stresses g3

nnd , g3
ntd and the electric displacement g3

2Dd along the interface due to the
concentrated electric displacement D2 can also be calculated by Eqs. (2) and (25), the expressions of which
are not included in this paper.

2.3. Remote loading conditions

Consider a semi-in®nite interface crack in an in®nite dissimilar piezoelectric material loaded by the
remote stress intensity factors K1I , K1II ;K

1
III and the remote electric displacement intensity factor K1e , the

potential h�z� is

h�z� � epeKziew1 � eÿpeKzÿiew1

2
�������
2pz
p

coshpe
� K1IIIz

kw3 � K1e zÿkw4

2
�������
2pz
p

cospk
; �29�

where K � K1I � iK1II , e; k and w are given by Eq. (23). After substituting Eq. (29) into Eq. (17), the po-
tentials for the two half-spaces could then be obtained. When calculating the ®eld quantities via Eq. (2), one
has to replace z by zj � x� ljy respectively for each component of f �z� in Eq. (17).

3. Pseudo-traction-electric-displacement method

The problem to be solved in this section is shown in Fig. 2, in which N arbitrarily located subinterface
cracks are formed in the process zone near the interface macrocrack tip in a metal/piezoelectric bimaterial.
Here, 2ak and bk denote the crack length and the oriented angle of the kth crack. The bimaterial is loaded
by the remote stresses K1I ;K

1
II and the remote electric displacement K1e . All crack faces are assumed to be

traction-free and electric-charge-free. Using the PTEDM proposed by Chen and Han (1999a) in homo-
geneous piezoelectric materials, the present problem is divided into N � 2 sub-problems (Fig. 2), each of
which contains one single crack with unknown tractions and unknown electric displacement attached on
both faces. Using the fundamental solutions mentioned above and the superimposing technique, the fol-
lowing Fredholm integral equations is reduced:

P0�s� �
XN

k�1

Z ak

ÿak

Pk�tk�g3
nnp�tk; s�dtk �

XN

k�1

Z ak

ÿak

Qk�tk�g3
tnq�tk; s�dtk �

XN

k�1

Z ak

ÿak

Dk�tk�g3
nnd�tk; s�dtk � 0

�ÿ1 < s < 0�; �30a�

W.-Y. Tian, Y.-H. Chen / International Journal of Solids and Structures 37 (2000) 7743±7757 7749



Q0�s� �
XN

k�1

Z ak

ÿak

Pk�tk�g3
ntp�tk; s�dtk �

XN

k�1

Z ak

ÿak

Qk�tk�g3
ttq�tk; s�dtk �

XN

k�1

Z ak

ÿak

Dk�tk�g3
ttd�tk; s�dtk � 0

�ÿ1 < s < 0�; �30b�

D20�s� �
XN

k�1

Z ak

ÿak

Pk�sk�g3
2Dp�tk; s�dtk �

XN

k�1

Z ak

ÿak

Qk�tk�g3
2Dq�tk; s�dtk �

XN

k�1

Z ak

ÿak

Dk�tk�g3
2Dd�tk; s�dtk � 0

�ÿ1 < s < 0�; �30c�Z 0

ÿ1
g0

nnp�s; tk�P0�s�
h

� g0
nnq�s; tk�Q0�s� � g0

nnd�s; tk�D0�s�
i

ds
Z ak

ÿak

g1
nnp�sk; tk�Pk�sk�

h
� g1

nnq�sk; tk�Qk�sk� � g1
nnd�sk; tk�Dk�sk�

i
dsk �

XN

i�1
i6�k

Z ai

ÿai

g2
nnp�ti; tk�Pi�ti�

h
� g2

nnq�ti; tk�Qi�ti�

� g2
nnd�ti; tk�Di�ti�

i
dti � pk�tk�; �30d�

Z 0

ÿ1
g0

ntp�s; tk�P0�s�
h

� g0
ntq�s; tk�Q0�s� � g0

ntd�s; tk�D0�s�
i

ds�
Z ak

ÿak

g1
ntp�sk; tk�Pk�sk�

h
� g1

ntq�sk; tk�Qk�sk� � g1
ntd�sk; tk�Dk�sk�

i
dsk �

XN

i�1
i6�k

Z ai

ÿai

g2
ntp�ti; tk�Pi�ti�

h
� g2

ntq�ti; tk�Qi�ti�

� g2
ntd�ti; tk�Di�ti�

i
dti � qk�tk�; �30e�

Fig. 2. Method of superimposing.
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Z 0

ÿ1
g0

2Dp�s; tk�P0�s�
h

� g0
2Dq�s; tk�Q0�s� � g0

2Dd�s; tk�D0�s�
i

ds�
Z ak

ÿak

g1
2Dp�sk; tk�Pk�sk�

h
� g1

2Dq�sk; tk�Qk�sk� � g1
2Dd�sk; tk�Dk�sk�

i
dsk �

XN

i�1
i 6�k

Z ai

ÿai

g2
2Dp�ti; tk�Pi�ti�

h
� g2

2Dq�ti; tk�Qi�ti�

� g2
2Dd�ti; tk�Di�ti�

i
dti � d2k�tk�

�ÿak < sk < ak; ÿak < tk < ak; k � 1; 2; . . . ;N�; �30f�
where P0�s�; Q0�s�; Pk�sk�; Qk�sk�; Pi�ti�; Qi�ti�; and D0�s�; Dk�tk�; Di�ti� are the so-called pseudo-trac-
tions and pseudo-electric-displacements to be determined, the thirty-six kernel functions g0

nnp; g0
nnq; g0

nnd ;
g0

ntp; g0
ntq; g0

ntd ; g0
2Dp; g0

2Dq; g0
2Dd ; g1

nnp; g1
nnq; g1

nnd ; g2
nnp; g2

nnq; g2
nnd ; g1

ntp; g1
ntq; g1

ntd ; g2
ntp; g2

ntq; g2
ntd ; g1

2Dp; g1
2Dq;

g1
2Dd ; g2

2Dq; g2
2Dp; g2

2Dd g3
nnp; g3

nnq; g3
nnd ; g3

ntp; g3
ntq; g3

ntd ; g3
2Dp; g3

2Dq, and g3
2Dd are given in Section 2. The

subscripts, n, t, D, 0, k, and i indicate the normal quantities, the tangential quantities, the electric quantities,
the interface macrocrack, the kth crack and the ith crack, respectively. The terms on the right-hand sides of
Eqs. (30d)±(30f) pk�tk�; qk�tk�, and d2k�tk� are the known stresses and the known electric displacement on the
crack faces, respectively, induced from the remote loading conditions.

Using the Chebyshev numerical integration technique, the integral Eqs. (30a)±(30f) could be solved
numerically for the unknown pseudo-tractions Pk�sk�; Qk�sk�; and unknown pseudo-electric-displacement
Dk�tk� �k � 0; 1; 2; . . . ;N�. After doing so, the stress intensity factors (KI;KII) and the electric displacement
intensity factors (Ke) at the crack tips could be evaluated without any di�culty.

The stress intensity factor for the semi-in®nite interface crack in dissimilar piezoelectric materials could
be expressed as

Kt � Kt
I � iKt

II � ÿ 2=p� �1=2
coshpe

Z 0

ÿ1
�ÿx�ÿ1=2ÿiet01�x�dx;

Kt
e � ÿ 2=p� �1=2

cospk
Z 0

ÿ1
�ÿx�ÿ1=2�kt04�x�dx:

�31�

The stress intensity factors for the kth subinterface crack are

KR
I � iKR

II � ÿ�pa�ÿ1=2

Z ak

ÿak

ak � xk

ak ÿ xk

� �1=2

�Pk � iQk�dxk;

KR
e � ÿ�pa�ÿ1=2

Z ak

ÿak

ak � xk

ak ÿ xk

� �1=2

Dk dxk;

�32�

where the term R denotes the right crack tip, with an analogous expression at the left crack tip.

4. Numerical examples and discussion

Consider an in®nite piezoelectric bimaterial plate containing an interface macrocrack and a subinterface
microcrack of length 2a as shown in Fig. 3. r is the distance between the macrocrack tip and the center of
the subinterface crack, h is the angle between the r and the x-axis, b is the orientation angle of the sub-
interface crack. Take r=a � 1:3, b � 0� and let the same piezoelectric material (PZT-4) occupy the upper
and lower half-spaces and the poling direction of the material is perpendicular to the macrocrack; thus, the
present problem is reduced to a homogeneous problem whose solutions have been given by Chen and Han
(1999b). Using the method established in this paper, the numerical results of the normalized Mode I stress
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intensity factor Kt
I=K1I at the macrocrack tip versus the location angle h of the microcrack under three

di�erent loading conditions are calculated and listed in Table 1. Among the three kinds of loadings, the ®rst
is the compound mechanical-positive-electric loading (K1I 6� 0;K1II � 0;K1e � 10ÿ8K1I CNÿ1), the second is
the purely mechanical loading (K1I 6� 0;K1II � 0;K1e � 0), and the third is the compound mechanical-
negative-electric loading (K1I 6� 0;K1II � 0;K1e � ÿ10ÿ8K1I CNÿ1). From Table 1, it is found that the nu-
merical results obtained in this paper well agree with those given by Chen and Han (1999b). The above
comparison results fully demonstrate the reliability of the numerical computing scheme proposed in this
paper.

The following results are gained by using a special kind of material combination, Cu/PZT-4, the material
constants are listed in Tables 2 and 3. Here, it should be noted that the brittle piezoelectric materials always
occupy the lower half-plane, so it is more possible for cracks to appear in material 2, namely, subinterface
cracks. Also, the plane strain is considered.

First, consider an interface macrocrack and a parallel subinterface microcrack of length 2a as shown in
Fig. 3 (b � 0�). Under the three kinds of loading conditions mentioned above, taking r=a � 1:2; 1:5; and

Fig. 3. An interface macrocrack and a subinterface microcrack.

Table 1

The values of Kt
I=K1I for the homogeneous piezoelectric material (PZT-4)

h (deg) Numerical values

K1I 6� 0; K1II � 0;
K1e � 10ÿ8K1I CNÿ1

K1I 6� 0; K1II � 0;
K1e � 0

K1I 6� 0; K1II � 0;
K1e � ÿ10ÿ8K1I CNÿ1

17 1.3676 1.3353 1.3030

51 1.0761 1.0499 1.0238

68 0.9384 0.9530 0.9676

136 0.8183 0.8283 0.8385

153 0.9066 0.8765 0.8464

Table 2

Material constants of the PTZ-4 ceramic

C11 C12 C13 C33 C44 e31 e33 e15 w11 w33

1.4020 0.7892 0.7565 1.1577 0.2525 ÿ5.2677 15.4455 12.0000 0.6359 0.5523

The C values are expressed in N/m2 � 1011, e values in C/m2 and w values in C/V m� 10ÿ8.
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2.0, the numerical results of the normalized Mode I stress intensity Kt
I=K1I at the macrocrack tip against the

angle h are shown in Fig. 4(a)±(c). It can be found from Fig. 4 that the mechanical loading and the electric
loading are really coupled to take e�ect on the macrocrack±microcrack interaction behavior. For example,
in the range of h smaller than 29� in Fig. 4(a), in the range of h smaller than 34� in Fig. 4(b), and in the

Table 3

Material constants of Cu

Shear modulus �N=m2 � 1011� PoissonÕs ratio

0.478 0.345

Fig. 4. The normalized stress intensity factor Kt
I=K1I vs. the angle h: (a) r=a � 1:2, (b) r=a � 1:5 and (c) r=a � 2:0.
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range of h smaller than 40� in Fig. 4(c), the positive electric loading leads to aiding the ampli®cation e�ect
(Kt

I=K1I > 1), while the negative electric loading leads to impeding the ampli®cation e�ect. However, in the
range of h larger than 94� in Fig. 4(a) and (b), and in the range of h larger than 93.5� in Fig. 4(c), the
positive electric loading leads to impeding the shielding e�ect (Kt

I=K1I < 1), while the negative electric
loading leads to aiding the shielding e�ect. It is also found from Fig. 4 that, in the range of h between 29�

and 94� in Fig. 4(a), in the range of h between 34� and 94� in Fig. 4(b), and in the range of h between 40� and
93.5� in Fig. 4(c), the positive electric loading decreases the ampli®cation e�ect and increases the shielding
e�ect; on the contrary, the negative electric loading increases the ampli®cation and decreases the shielding
e�ect. On the other hand, the above phenomena reveal that the microcrack shielding or ampli®cation e�ect
is distinctly di�erent for the sign of the electric loading and the di�erent microcrack location. In addition, it
is obviously seen from Fig. 4 that the curves in each of the ®gures cross at two points at which the numerical
results of the normalized Mode I stress intensity factor Kt

I=K1I are weakly dependent on the electric loading.
Such speci®ed microcrack location angles are called neutral electric loading angles (NELA) and denoted by
hNE in this paper. From Fig. 4, it is known that the NELA hNE equals to about 29� and 94� for r=a � 1:2
(Fig. 4(a)), 34� and 94� for r=a � 1:5 (Fig. 4(b)), and 40� and 93.5� for r=a � 2:0 (Fig. 4(c)), respectively.
Moreover, it can also be seen that the positive electric loading increases the maximum ampli®cation e�ect
and decreases the maximum shielding e�ect, while the negative electric loading decreases the maximum
ampli®cation e�ect and increases the maximum shielding e�ect.

Then, consider an interface macrocrack and an arbitrarily oriented subinterface microcrack of length 2a
as shown in Fig. 3. The numerical results of the normalized Mode I stress intensity factor Kt

I=K1I at the
macrocrack tip with the variation of the microcrack orientation angle b are shown in Fig. 5(a)±(c) for
h � 60�, 90�, and 120�, respectively. It can be found from Fig. 5(a) that the positive electric loading always
increases the shielding e�ect and decreases the ampli®cation e�ect, while the negative electric loading al-
ways decreases the shielding e�ect and increases the ampli®cation e�ect. Moreover, no neutral electric
loading angle occurs in the whole curves (Fig. 5(a)). From Fig. 5(b) and (c), it can be found that in the range
of b between 0� and 130�, and between 168� and 180� in Fig. 5(b), and in the range of b between 33� and 73�

in Fig. 5(c), the positive electric loading leads to impeding the ampli®cation e�ect and aiding the shielding
e�ect, while the negative electric loading leads to aiding the ampli®cation e�ect and impeding the shielding
e�ect. However, in the range of b between 130� and 168� in Fig. 5(b), in the range of b between 0� and 33�

and in the range of b between 73� and 180� in Fig. 5(c), the positive electric loading weakens the shielding
e�ect, and be contrary to this the negative electric loading strengthens the shielding e�ect. Furthermore,
there exist two neutral electric loading angles bNE in Fig. 5(b) and (c). bNE equals to about 130� and 168�

when h � 90�, and bNE equals to about 33� and 73� when h � 120�. Besides these, it can also be found that
the electric loading has little in¯uence on the maximum ampli®cation angle, while it has a remarkable
in¯uence on the maximum shielding angle.

Furthermore, consider an interface macrocrack and two subinterface microcracks of the same length 2a
shown in Fig. 6 where r1 and r2 denote the distances between the macrocrack tip and the centers of the two
subinterface microcracks, respectively, h1 and h2 are the including angles between r1, r2 and the x-axis, b1

and b2 represent the orientation angles of the two subinterface microcracks. Taking r1=a � 1:5, r2=a � 2:5,
h1 � 45�, h2 � 135�, and b2 � 0�, the computed values of Kt

I=K1I with the variation of angle b1 are shown in
Fig. 7. It is found from Fig. 7 that in the range of b1 between 0� and 110�, the in¯uence of the electric
loading on the macrocrack±microcrack interaction behavior is relatively large, i.e. the positive elec-
tric loading increases the ampli®cation e�ect and decreases the shielding e�ect, while the negative electric
loading decreases the ampli®cation e�ect and increases the shielding e�ect. However, when the value of b1

becomes larger than 110�, the interaction curves obtained under compound mechanical-electric loading
condition (see the dotted lines and the imaginary line in the ®gure) nearly coincide with that derived under
purely mechanical loading condition (see the real line in the ®gure); in other words, the numerical results of
Kt

I=K1I are weakly dependent on the electric loading.
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5. Conclusions

From the above discussion, the following conclusions could be obtained:
1. The PTEDM is really e�ective to solve the interaction problem between a semi-in®nite interface crack

and subinterface cracks in metal/ piezoelectric bimaterials.
2. The mechanical loading and the electric loading are coupled to take e�ect on the macrocrack±microcrack

interaction in metal/piezoelectric bimaterials.
3. The electric loading can bring remarkable in¯uence on the interaction e�ect of a semi-in®nite interface

crack and multiple subinterface microcracks in metal/piezoelectric bimaterials. In¯uences of electric
loading on microcrack shielding or ampli®cation e�ect are substantially dependent on the sign of the
electric loading and the geometry of the microcrack arrangement.

Fig. 5. The normalized stress intensity factor Kt
I=K1I vs. the angle b: (a) h � 60�, (b) h � 90� and (c) h � 120�.
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4. The in¯uences of the positive electric loading on the ampli®cation e�ect and the shielding e�ect are op-
posite to those of the negative electric loading.

5. The NELA are dependent on the con®guration of subinterface microcracks.
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